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Abstract—Function computation over wireless sensor networks
is investigated, where K sensors measure their observations and
a fusion center wishes to estimate a pre-defined function of the
observations via fading multiple access channels (MACs). The
arithmetic sum and type functions are considered since they yield
various fundamental sample statistics such as mean, variance,
maximum, minimum, etc. We propose a novel opportunistic in-
network computation (INC) scheme in which a subset of sensors
with large channel gains opportunistically participate in the
transmission at each time slot, while all sensors in a network
simultaneously send their observations or only a single sensor
sends its observation in the conventional INC schemes. We
analyze the ergodic computation rate of the proposed INC scheme
and prove that it achieves a non-vanishing computation rate even
when the number of sensors K tends to infinity, which provides
a significant rate improvement compared to the conventional
INC schemes whose computation rates converge to zero as K
increases.

Index Terms—In-network computation, fading channels, lattice
codes, opportunistic communication, wireless sensor networks.

I. INTRODUCTION

Contrary to traditional wireless networks, the main goal of
communications in wireless sensor networks (WSNs) is to
compute some pre-defined functions of sensor observations
(also called sensor readings) at a fusion center, rather than
obtaining the observations themselves [1]. Applications of
WSNs include disaster alarm, environmental monitoring, etc.
For example, many sensor applications involve the sample
mean, e.g., the average temperature from several temperature
readings.

Unlike point-to-point channels, designing source and chan-
nel coding separately is quite suboptimal for function com-
puting over general WSNs, especially when the network size
increases. To overcome such limitation of the source–channel
separation approach, communication techniques considering a
joint design of source and channel coding have been actively
studied in the literature [2]–[10], which is referred to as joint
source–channel coding. The potential of linear source coding
has been captured in [4], applying the linear source coding in
[2] for the function computation over Gaussian multiple access
channels (MACs). An efficient way of computing the modulo
sum or the sum of Gaussian sources over Gaussian MACs
using lattice codes has been proposed in [4], [6]. This lattice-
based computation has been recently extended to multiple
receivers called compute-and-forward [5], in which each relay
computes or decodes linear combination of the sources. More

recently, linear source coding and lattice-based computation
have been applied for computing the arithmetic sum and type
functions in [9]. Interactive communication between sensors
in order to efficiently compute the type-threshold function has
been studied in [7], [10]. In spite of the previous studies,
however, relatively little progress has been made so far on how
to efficiently compute functions under fading environment.

In this paper, therefore, we study the function computation
problem over the fading MAC, which has been served as a
fundamental building block for general WSNs. We propose
a opportunistic INC framework by considering the time-
varying nature of fading channels, in which a subset of
sensors with large channel gains opportunistically participate
in the transmission at each time slot. We further prove that
the opportunistic INC framework achieves a non-vanishing
computation rate even when the number of sensors in the
network tends to infinity, which significantly improves the
previous computation rates converging to zero as the number
of sensors increases.

Notations: Let [1 : n] := {1, 2, · · · , n}, C(x) := log(1+x),
and C+(x) := max {log(x), 0}. Let diag({ai}i∈[1:n]) denote
the diagonal matrix consisting of a1 to an as its diagonal
elements, 1(·) denote the indicator function of an event, and
card(·) denote the cardinality of a set. For a random variable
A, H(A) denotes the entropy of A.

II. PROBLEM FORMULATION

Consider the computation over the fading MAC depicted
in Fig. 1, in which the fusion center wishes to compute a
desired function of K sources observed by each of K sensor
nodes. In particular, sensor i ∈ [1 : K] is assumed to observe
a length-k discrete source vector [si[1], · · · , si[k]] ∈ [1 : p]k

and the fusion center computes f(s1[j], s2[j], · · · , sK [j]) for
all j ∈ [1 : k], where p ∈ N denotes the number of sample
values. For convenience, denote the jth set of K sources as
s[j] = [s1[j], s2[j], · · · , sK [j]], where j ∈ [1 : k]. At each
j ∈ [1 : k], s[j] is assumed to be independently drawn from a
joint probability mass function pS(·).

The received signal at the fusion center at time slot t is
given by

y[t] =

K∑
i=1

hi[t]xi[t] + z[t], (1)
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Fig. 1. INC model over fading MAC

where xi[t] denotes the transmit signal of sensor i at time
slot t and hi[t] denotes the wireless channel coefficient from
sensor i to the fusion center at time slot t. z[t] represents
the additive Gaussian noise at time slot t, assumed to follow
CN (0, 1) and be independent over time slots. We assume time-
varying channel coefficients in which hi[t] is i.i.d. drawn from
a continuous distribution fh(·) for each time slot. We further
assume that global channel state information is available at all
sensors and the fusion center. All sensors are assumed to have
an identical average power constraint, i.e., E[|xi[t]|2] ≤ P
for all i ∈ [1 : K]. In this paper, we focus on two types of
desired functions: the arithmetic sum function and the type (or
frequency histogram) function, as considered in [3], [9].

For completeness, we state the formal definition of the
desired function in the following.

Definition 1 (Desired function): Let s = [s1, · · · , sK ] ∈
[1 : p]K . Then f(s) = {∑K

i=1 alisi}Ll=1 and f(s) =
{b1(s), · · · , bp(s)} for the arithmetic sum computation and
the type computation respectively, where ali ∈ [0 : q] and
bm(s) =

∑K
i=1 1si=m. ♦

Note that the desired function in Definition 1 is locally
computable, which will be exploited in the proposed INC
scheme. The definition of a locally computable function is
given in the following.

Definition 2 (Locally computable function): Suppose that
{λi}Ni=1 are N partition sets of [1 : K], i.e., λi∩λj = ∅ for all
i, j ∈ [1 : N ] with i 6= j and

⋃N
i=1 λi = [1 : K]. A function

is said to be locally computable if there exists g(·) for any
{λi}Ni=1 satisfying f(s) = g(f({si}i∈λ1

), · · · , f({si}i∈λN ))
♦.

Let S = [S1, · · · , SK ] ∈ [1 : p]K be the random
source vector associated with pS(·). Then f(S) is the desired
function induced by the random source vector S. Denote
Ul =

∑K
i=1 aliSi for l ∈ [1 : L] and Bm =

∑K
i=1 1Si=m

for m ∈ [1 : p]. Then f(S) = (U1, · · · , UL) for the arithmetic
sum function and f(S) = (B1, · · · , Bp) for the type function.

Definition 3 (Computation rate): The computation rate
R := limn→∞

k(n)
n H(f(S)) is said to be achievable if

there exists a sequence of length-n block codes such that
Pr
[⋃k

j=1 f̂(s[j]) 6= f(s[j])
]
→ 0 as n increases. ♦

From Definition 3, the computation rate R bits/sec/Hz is the
number of information bits with respect to the desired function
delivered by each channel use.

III. PRELIMINARIES AND MAIN RESULTS

In this section, we briefly introduce existing INC schemes
and their limitation to fading environment, and then show our
main results. For easy presentation, we omit the time index t
in the rate expressions.

A. Previous Work
In [9], computing the arithmetic sum and type functions,

defined in Definition 1, has been studied for Gaussian (non-
fading) MAC, i.e., hi[t] = hi for all t. The authors showed that
R(h1, · · · , hK) = C+

(
1
K + mini∈[1:K] |hi|2P

)
is achievable,

see [9, Theorem 3]. Therefore, it can be shown that R =
E
[
C+
(

1
K + mini∈[1:K] |hi|2P

)]
is achievable by applying the

result of [9, Theorem 3] to the fading MAC in Section II. To
improve this computation rate for fading environment, long-
term power control has been considered in [9, Theorem 5],
provided that

R = E

[
C+

(
1

K
+

mini∈[1:K] |hi|2P
E[mini∈[1:K] |hi|2/|h1|2]

)]
(2)

is achievable for the fading MAC in Section II, where
1

E[mini∈[1:K] |hi|2/|h1|2] ≥ 1 represents the gain from the long-
term power control. However, for i.i.d. Rayleigh fading chan-
nels, i.e., hi[t] ∼ CN (0, 1), the computation rate in (2)
converges to zero as K increases. Another approach is for each
sensor to transmit separately in each time slot (without INC),
achieving the computation rate of R = 1

K E
[
C(|h1|2P )

]
,

which also converges to zero as K increases due to the term
1/K. To the best of our knowledge, the computation rates
achievable by directly applying the conventional INC schemes
for the considered fading MAC decrease as the number of
sensors K increases and eventually converge to zero in the
limit of large K [3]–[5], [8], [9].

B. Main Results
We derive the computation rate of the proposed oppor-

tunistic INC framework over the fading MAC in Theorem 1
and prove that it achieves a non-vanishing computation rate
regardless of K in Corollary 1.

Theorem 1: For any M,N ∈ N satisfying MN = K, the
computation rate of the proposed opportunistic INC over the
fading MAC described in Section II is given by

R =
1

N
E

C+

 1

M
+

|hπM |2KP∑M
i=1 E

[
|hπM |2
|hπi |2

]
 , (3)

where {πi}Ki=1 denotes the set of ordered sensor indices of
[1 : K] such that |hπ1

| ≥ |hπ2
| ≥ · · · ≥ |hπK |.

Proof: We refer to Section IV for the proof.
The proposed INC framework exploits both the superposi-

tion property of wireless channels, which has been used for
in-network computing in non-fading networks [4], [5], [8], [9],
and the locally computable property of the desired function,
which has been used for computing in tree networks [3] and
interactive computing between nodes [7], [10]. For instance,
Theorem 1 attains the result in [9, Theorem 5] by setting
M = K and N = 1 and also attains the communication-based
computation by seting M = 1 and N = K.
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Fig. 2. Computation rates with respect to M when K = 32 for i.i.d. Rayleigh
fading channels.

Corollary 1: As K increases, the computation rate achiev-
able by Theorem 1 is given by

R = min

(
∆E

[
C
(
|h1|2P

)]
,

1−∆

2
E
[
C+(2µP )

])
, (4)

where ∆ ∈ (0, 1) and µ denotes the median of the distribution
f|h|2(·), which is induced by fh(·).

Proof: We refer to the full paper in preparation for the
proof.

Notice that ∆ and µ in Corollary 1 are not a function of K
and, as a consequence, R in Corollary 1 is not a function of
K. Therefore, the proposed scheme achieves a non-vanishing
computation rate if P > 1

2µ . For i.i.d. Rayleigh fading, for
instance, f|h|2(·) follows the exponential distribution with
parameter one, i.e., f|h|2(x) = exp(−x) and µ = ln(2). Hence
a non-vanishing computation rate is achievable if P > 1

2 ln(2) ,
which is approximately given by −1.4 dB.

Fig. 2 plots the computation rate of the proposed oppor-
tunistic INC in Theorem 1 with respect to M when K = 32.
The results demonstrate that the computation rate in Theorem
1 with optimally chosen M outperforms the existing INC
schemes, which are the cases where M = 1 and M = K
in the figure. Fig. 3 shows the computation rate of the
opportunistic INC with optimal M as the number of sensors
K increases. As proved in Corollary 1, the opportunistic INC
with optimal M achieves a non-vanishing computation rate
even as K increases, while the computation rates attained
by the conventional INC schemes converge to zero as K
increases.

IV. OPPORTUNISTIC IN-NETWORK COMPUTATION

In this section, we prove Theorem 1. For each time slot
t ∈ [1 : n], let us define {πi[t] ∈ [1 : K]}Ki=1 as the set of
reordered sensor indices such that |hπ1[t][t]| ≥ |hπ2[t][t]| ≥
· · · ≥ |hπK [t][t]|.
A. Opportunistic Local Function Computation

At each time slot t, the M sensors in {πi[t]}Mi=1 par-
ticipate in the transmission and the fusion center computes
the local function f(sπ1[t], · · · , sπM [t]). Let R′(t) denote
the computation rate at time slot t for the local function
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Fig. 3. Computation rates with respect to K when P = 10 dB for i.i.d.
Rayleigh fading channels.

f(sπ1[t], · · · , sπM [t]) and Pi[t] denote the transmit signal
power of sensor i at time slot t, where Pπi[t][t] = 0 for
i ∈ [M+1 : K]. We apply the same computing code proposed
in [9] for each local function computation, see [9, Theorem
3] for the detailed code construction. From [9, Theorem 3],

R′[t] = C+

(
1

M
+ min
i∈[1:M ]

|hπi[t][t]|2Pπi[t][t]
)

(5)

is achievable for the local function computation of
f(sπ1[t], · · · , sπM [t]). Then by setting

Pπi[t][t] =
KP∑M

j=1 E
[
|hπM [t][t]|2
|hπj [t][t]|

2

] |hπM [t][t]|2
|hπi[t][t]|2

for i ∈ [1 : M ],

(6)

which satisfies the average power constraint P , and applying
the same coding strategy over large enough time slots satisfy-
ing {πi[t]}Mi=1 = {πi}Mi=1, the ergodic computation rate of

R′ := E

C+

 1

M
+

|hπM |2KP∑M
i=1 E

[
|hπM |2
|hπi |2

]
 (7)

is achievable for computing f(sπ1
, · · · , sπM ). In the follow-

ing, we state how to apply such local computing to attain
sample-by-sample desired functions {f(s[j])}j∈[1:k].

B. Construction of the Desired Function
Since only M sensors opportunistically participate in the

transmission at each time slot, in order to construct the desired
function f(s) in Definition 1, the fusion center needs N
local functions. Let λ1 to λN denote sensor subsets each
consisting of M sensors. Then, from the locally computable
property in Definition 2, the fusion center is able to construct
f(s) by using the computed f({si}i∈λ1

) to f({si}i∈λN ) if⋃N
l=1 λl = [1 : K] is satisfied. In order to exploit this property,

however, the sample indices of the N local functions should
be the same. We explain how to obtain such sample-by-sample
desired functions in the following.

Let Λ = {λ ⊆ [1 : K] : card(λ) = M} denote the set
of all sensor subsets consisting of M sensors in each subset,
where card(Λ) =

(
K
M

)
. For λ ∈ Λ, define Tλ = {t ∈ [1 : n] :
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TABLE I. The transmitted source at each sensor and the computed local function at the fusion center.

sensor 1 sensor 2 sensor 3 sensor 4 fusion center
t = 1 s1[2] ∅ s3[2] ∅ f(s1[2], s3[2])
t = 2 ∅ s2[3] s3[3] ∅ f(s2[3], s3[3])
t = 3 ∅ ∅ s3[1] s4[1] f(s3[1], s4[1])
t = 4 ∅ s2[2] ∅ s4[2] f(s2[2], s4[2])
t = 5 s1[1] s2[1] ∅ ∅ f(s1[1], s2[1])
t = 6 ∅ s2[4] s3[4] ∅ f(s2[4], s3[4])
t = 7 ∅ s2[5] ∅ s4[5] f(s2[5], s4[5])
t = 8 s1[6] s2[6] ∅ ∅ f(s1[6], s2[6])
t = 9 s1[3] ∅ ∅ s4[3] f(s1[3], s4[3])
t = 10 s1[5] ∅ s3[5] ∅ f(s1[5], s3[5])
t = 11 ∅ ∅ s3[6] s4[6] f(s3[6], s4[6])
t = 12 s1[4] ∅ ∅ s4[4] f(s1[4], s4[4])

{πi[t]}Mi=1 = λ} as the set of time slot indices that the sensors
in λ participate in the transmission. We further define

Ω =

{
ω = (λ1, · · · , λN ) ∈ ΛN :

N⋃
l=1

λl = [1 : K]

}
(8)

as the set of all possible N sensor subsets that can be used for
constructing the desired function from the locally computable
property in Definition 2, where card(Ω) =

∏N−1
l=0

(
K−Ml
M

)
.

For λ ∈ Λ, let Ωλ = {ω ∈ Ω : λ ∈ ω} as the set of N
sensor subsets that include λ as an element, where card(Ωλ) =
N
∏N−1
l=1

(
K−Ml
M

)
.

1) Sample-by-sample computing: We first provide an intu-
itive explanation on how to obtain sample-by-sample desired
functions based on the case where K = 4 and M = N = 2.
For this case,

Λ = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},
Ω = {((1, 2), (3, 4)), ((1, 3), (2, 4)), ((1, 4), (2, 3)),

((2, 3), (1, 4)), ((2, 4), (1, 3)), ((3, 4), (1, 2))}. (9)

From Ω, we are able to define the transmission scheme at
each sensor and the desired function computation by using
computed local functions at the fusion center. Suppose that
n = 12 and T(1,2) = {5, 8}, T(1,3) = {1, 10}, T(1,4) = {9, 12},
T(2,3) = {2, 6}, T(2,4) = {4, 7}, T(3,4) = {3, 11}. Then, the
transmission of each sensor and the local function computation
at the fusion center are given in Table I. For simplicity, we
assume that the number of local functions computable by a
single channel use is equal to one. Specifically, at t = 1,
sensors 1 and 3 send s1[2] and s3[2] respectively and the
fusion center computes f(s1[2], s3[2]). Note that they send
their second sources at t = 1 since (1, 3) firstly appears in the
second element in Ω. Similarly, at t = 2, sensors 2 and 3 send
s2[3] and s3[3] respectively and the fusion center computes
f(s2[3], s3[3]) since (2, 3) firstly appears in the third element
in Ω. Each sensor and the fusion center perform the same
procedure for the rest of time slots. For instance, at t = 10,
sensors 1 and 3 send s1[5] and s3[5] respectively since (1, 3)
secondly appears in the fifth element in Ω.

After computing 12 local functions as in Table I,
the fusion center attains 6 desired functions again based
on Ω. Specifically, the first element in Ω is given by
((1, 2), (3, 4)) and, therefore, the two local functions com-
puted at time slots 5 and 3 are used to construct f(s[1]),

i.e., f(s[1]) = g(f(s1[1], s2[1]), f(s3[1], s4[1])). Similarly,
f(s1[2], s3[2]) and f(s2[2], s4[2]) computed at time slots 1 and
4 respectively are used to construct f(s[2]) from the second
element in Ω. In the same manner, the fusion center attains
the rest of the desired functions.

2) Detailed construction: In the above example, we assume
that card(Tλ) is the same for all λ ∈ Λ. In practice, however,
card(Tλ) is random, varying over channel realizations. The
following lemma characterizes the minimum deterministic
number of card(Tλ), which is the same for all λ ∈ Λ, in
the limit of large n.

Lemma 1: For any ε > 0, the probability that∣∣∣∣∣ 1n card(Tλ)− 1(
K
M

) ∣∣∣∣∣ ≥ ε (10)

for all λ ∈ Λ is lower bounded by 1− (KM)
4nε2 .

Proof: Since channel coefficients are i.i.d.,
Pr({πi[t]}Mi=1 = λ) is the same for all λ ∈ Λ, given
by Pr({πi[t]}Mi=1 = λ) = 1/

(
K
M

)
for all λ ∈ Λ. Therefore,

from the strong typicality in [11, Lemma 2.12], Lemma 1
holds.

By setting ε = 1
logn in Lemma 1, card(Tλ) ≥ n

(KM)
− n

logn

for all λ ∈ Λ with probability greater than 1 − (KM)(logn)2

4n ,
which converges to one as n increases. Therefore, from
Lemma 1, at least

T :=

n

(KM)
− n

logn

card(Ωλ)
=

n

(KM)
− n

logn

N
∏N−1
l=1

(
K−Ml
M

) (11)

time slots in Tλ can be used for computing the desired function
based on Ω. Denote such T time slots in Tλ as Tλ,ω , where
Tλ,ω1

∩ Tλ,ω2
= ∅ for ω1 6= ω2 ∈ Ωλ. Specifically, for given

ω ∈ Ω, the time slots in Tλ,ω are used to compute the local
function f({si}i∈λ) for all ω ∈ Ωλ, see also the example in
Section IV-B1 and Table I.

Let xi(λ, ω) ∈ CT×1 denote the length-T time-extended
transmit signal vector of sensor i during t ∈ Tλ,ω . Specifically,
we construct

xi(λ, ω) = Γi(λ, ω)x′i(λ, ω), (12)

where Γi(λ, ω) = diag
({√

Pi[t]
|hi[t]|
hi[t]

}
t∈Tλ,ω

)
and

x′i(λ, ω) is the lattice-based transmit signal vector for the
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distributed INC satisfying the average transmit power of one
used in [9, Theorem 3]. Here, from Section IV-A,

Pi[t] =


KP∑M

j=1 E

[
|hπM [t][t]|

2

|hπj [t]
[t]|2

] |hπM [t][t]|2

|hi[t]|2 for i ∈ {πj [t]}Mj=1,

0 otherwise.
(13)

Obviously, xi(λ, ω) = 0 from (13) if i /∈ λ since the M
sensors with the largest channel gains are in λ for t ∈ Tλ,ω .
Then, for all λ ∈ Λ and ω ∈ Ωλ, sensor i transmits xi(λ, ω)
during t ∈ Tλ,ω .

Let y(λ, ω) ∈ CT×1 denote the length-T time-extended
received signal vector of the fusion center during t ∈ Tλ,ω ,
that is given by

y(λ, ω) =
∑
i∈λ

Hi(λ, ω)xi(λ, ω) + z(λ, ω), (14)

where Hi(λ, ω) = diag({hi[t]}t∈Tλ,ω ) and z(λ, ω) is the
length-T time-extended noise vector during t ∈ Tλ,ω . Then,
from (12),

y(λ, ω) =
∑
i∈λ

Hi(λ, ω)Γi(λ, ω)x′i(λ, ω) + z(λ, ω)

=
∑
i∈λ

H′i(λ, ω)x′i(λ, ω) + z(λ, ω), (15)

where H′i(λ, ω) = diag({h′i[t]}t∈Tλ,ω ) and

h′i[t] =hi[t]
√
Pi[t]

|hi[t]|
hi[t]

=

√√√√ KP∑M
j=1 E

[
|hπM [t][t]|2
|hπj [t][t]|

2

] |hπM [t][t]|. (16)

Therefore, from (7), the computation rate of

R′ = E

C+

 1

M
+

|hπM |2KP∑M
j=1 E

[
|hπM |2
|hπj |2

]
 (17)

is achievable for computing the local function
f({si}i∈λ). More specifically, the fusion center computes
{f({si[l]}i∈λ)}l∈[1:R′T/H(f(S))] during t ∈ Tλ,ω . We refer to
the example in Section IV-B1 for the source rearrangement
at each sensor in order to compute sample-by-sample local
functions.

Hence, during t ∈ ⋃λ∈Λ:λ∈ω Tλ,ω , the fusion center com-
putes {f({si[l]}i∈λ)}l∈[1:R′T/H(f(S))] for all λ ∈ ω. By
using the locally computable property of the desired func-
tion in Definition 2, the fusion center then computes the
desired functions {f(s1[l], · · · , sK [l])}l∈[1:R′T/H(f(S))]. Since
card(Ω) =

∏N−1
l=0

(
K−Ml
M

)
, the number of the computed

desired functions during t ∈ [1 : n] is given by

k =

(
N−1∏
l=0

(
K −Ml

M

))
R′T

H(f(S))
(18)

and, as a result, the computation rate of

R =
kH(f(S))

n

(a)
=

(∏N−1
l=0

(
K−Ml
M

))
R′T

n

(b)
=

(∏N−1
l=0

(
K−Ml
M

))
R′

n

n

(KM)
− n

logn

N
∏N−1
l=1

(
K−Ml
M

)
=

1

N
R′

(
1−

(
K
M

)
log n

)
(19)

is achievable, where (a) and (b) follow from (18) and (11)
respectively. In conclusion, (3) is achievable as n increases,
which complete the proof of Theorem 1.

V. CONCLUSION

In this paper, we investigated the function computation
problem in WSNs, focusing on an efficient INC strategy for
fading environment. The proposed opportunistic INC frame-
work exploits both the superposition property of wireless chan-
nel and the locally computable property of the desired func-
tion, combining with opportunistic transmission. We showed
that a non-vanishing computation rate can be achieved by the
opportunistic INC as the number of sensors in the network
increases.
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